

Engineering

CMMI for Development V.1.2 Module 3

M03/Engineering/v1.2

Agenda

Global scope

- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

Module 03 / Engineering - Requirements Engineering (REQM, RD) - Building the Product (TS, PI)			Scope		СММ
- Quality ir	n Engineering (VAL, N managemen	/ER) agen	t nent	Engineering	Support
ML5	OID				CAR
ML4	OPP	QPM			
ML3	OPF OPD+IPPD OT	IPM+IPPD RSKM		RD TS PI VAL VER	DAR
ML2		PP PMC SAM		REQM	CM MA PPQA
ML1					

Global Scope

M03/Engineering/v1.2

4 of 152

M03/Engineering/v1.2

5 of 152

Product Development 1

- Establishing and maintaining sets of requirements
 - customer requirements
 - product requirements
 - product-component requirements
 - managing the requirements as the product evolves

M03/Engineering/v1.2

8 of 152

Product Development 2

System / Product Development

- Designing the product and its components
- Managing the interfaces
 - among the components
 - between the product and the other products
- Building the components
- Integrating the components into the product
- Ensuring the requirements are satisfied
- Ensuring the product will perform as intended
- Delivering the product

Product Development 2

Relationship to the Waterfall life cycle

- CMMI PAs are not generally aimed at describing phases of a Waterfall life cycle
- Engineering PAs are in a tight connection with Waterfall life cycle for product development
- Engineering PAs do not impose any specific model of applying Waterfall life cycle phases
 - RD, TS, PI, VER, and VAL activities may take place recursively throughout the life cycle

Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

M03/Engineering/v1.2

16 of 152

- Additional Relevant Terminology
 - Allocated Requirement
 - Requirement that levies all or part of a higher level requirement (functionality, performance) on a lower level architectural or design component

- Derived Requirement

- Requirement that is not stated explicitly in the customer requirements, but are inferred from
 - contextual requirements (law, standards, policies, etc.)
 - reqirements needed to specify a product component

- About functional decomposition
 - RD allowes (or even undertakes) performing a functional decomposition of a
 - system being analyzed, or
 - product being developed
 - Motivation:
 - it is very rarely to expect that a project start off with a complete and precise specified knowledge of requirements

Specific Goals

- SG 1 Develop Customer Requirements
 - Stakeholder needs, expectations, constraints, and interfaces are collected and translated into customer requirements
- SG 2 Develop Product Requirements
 - Customer requirements are refined and elaborated to develop product and product-component requirements
- SG 3 Analyze and Validate Requirements
 - The requirements are analyzed and validated, and a definition of required functionality is developed

SG 1 Develop Customer Reqs

- SP 1.1 Elicit stakeholder needs, expectations, constraints, and interfaces for all phases of the product life cycle
 - Examples of techniques include the following
 - Technology demonstrations
 - Interface control working groups
 - Technical control working groups
 - Interim project reviews
 - Questionnaires, interviews, and operational scenarios obtained from end users
 - Operational walkthroughs and end-user task analysis
 - Prototypes and models
 - Brainstorming

SG 1 Develop Customer Reqs

- SP 1.1 Elicit stakeholder needs, expectations, constraints, and interfaces for all phases of the product life cycle
 - Examples of techniques include the following
 - Quality Function Deployment
 - Market surveys
 - Beta testing
 - Extraction from sources such as documents, standards, or specifications
 - Observation of existing products, environments, and workflow patterns
 - Use cases
 - Business case analysis
 - Reverse engineering (for legacy products)

SG 1 Develop Customer Reqs

- SP 1.2 Transform stakeholder needs, expectations, constraints, and interfaces into customer requirements
 - Typical Work Products
 - Customer requirements
 - Customer constraints on the conduct of verification
 - Customer constraints on the conduct of validation

SG 2 Develop Product Reqs. cmmi

- SP 2.1 Establish and maintain product and product-component requirements, which are based on the customer requirements
 - Typical Work Products
 - Derived requirements
 - Product requirements
 - Product-component requirements

SG 2 Develop Product Reqs. cmmi

SP 2.2 Allocate the requirements for each product component

- Typical Work Products
 - Requirement allocation sheets
 - Provisional requirement allocations
 - Design constraints
 - Derived requirements
 - Relationships among derived requirements
- SP 2.3 Identify interface requirements
 - Typical Work Products
 - Interface requirements
 - Examples of these interfaces include
 - interfaces with test equipment, transportation systems,
 - support systems, and manufacturing facilities

M03/Engineering/v1.2

33 of 152

SG 3 Analyze and Validate Req

SP 3.1 Establish and maintain operational concepts and associated scenarios

- Typical Work Products
 - Operational concept
 - Product installation, operational, maintenance, and support concepts
 - Disposal concepts
 - Use cases
 - Timeline scenarios
 - New requirements

SG 3 Analyze and Validate Req

SP 3.2 Establish and maintain a definition of required functionality

- Typical Work Products
 - Functional architecture
 - Activity diagrams and use cases
 - Object-oriented analysis with services identified

SG 3 Analyze and Validate Req

- SP 3.3 Analyze requirements to ensure that they are necessary and sufficient
 - Typical Work Products
 - Requirements defects reports
 - Proposed requirements changes to resolve defects
 - Key requirements
 - Technical performance measures
- SP 3.4 Analyze requirements to balance stakeholder needs and constraints
 - Typical Work Products
 - Assessment of risks related to requirements
SG 3 Analyze and Validate Req

- SP 3.5 Validate requirements to ensure the resulting product will perform as intended in the user's environment
 - Typical Work Products
 - Record of analysis methods and results
 - Note:
 - SP 3.5 overlaps with VAL it stresses out a necessity to perform validation in RD

Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

Requirements Management cmmi

M03/Engineering/v1.2

39 of 152

M03/Engineering/v1.2

40 of 152

Requirements Management cmmi

- Additional Relevant Terminology
 Requirements Tracebility
 - The evidence of an association between a requirement and its
 - source requirement,
 - implementation, and
 - verification

Requirements Management cmmi

M03/Engineering/v1.2

42 of 152

M03/Engineering/v1.2

43 of 152

Requirements Management

Specific Goals

- SG 1 Manage Requirements
 - Requirements are managed and inconsistencies with project plans and work products are identified

- SP 1.1 Develop an understanding with the requirements providers on the meaning of the requirements
 - Typical Work Products
 - Lists of criteria for distinguishing appropriate requirements providers
 - Criteria for evaluation and acceptance of requirements
 - Results of analyses against criteria
 - An agreed-to set of requirements

- SP 1.1 Develop an understanding with the requirements providers on the meaning of the requirements
 - Examples of acceptance criteria include the following:
 - Clearly and properly stated
 - Complete
 - Consistent with each other
 - Uniquely identified
 - Appropriate to implement
 - Verifiable (testable)
 - Traceable

SP 1.2 Obtain commitment to the requirements from the project participants

- Typical Work Products
 - Requirements impact assessments
 - Documented commitments to requirements and requirements changes

- SP 1.3 Manage changes to the requirements as they evolve during the project
 - Typical Work Products
 - Requirements status
 - Requirements database
 - Requirements decision database

- SP 1.4 Maintain bidirectional traceability among the requirements and the work products
 - Typical Work Products
 - Requirements traceability matrix
 - Requirements tracking system
 - Note
 - decide what level of granularity is appropriate for a traceability matrix
 - » too much detail can become overwhelming
 - » too little detail makes the matrix worthless

- SP 1.5 Identify inconsistencies between the project plans and work products and the requirements
 - Typical Work Products
 - Documentation of inconsistencies including sources, conditions, and rationale
 - Corrective actions

Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

- Additional Relevant Terminology
 - Product-related life-cycle processes
 - Processes associated with a product throughout one or more phases of its life
 - Sustainment
 - The processes used to ensure that product can be utilized operationally by its end users / customers

Additional Relevant Terminology

– Operational concept

- Description of the way in which component is used
- Operational scenario
 - A scenario of events and calls which shows how the component will be used

- Tech data package

- Set of documents appropriate to the product
 - Architecture and product description and characteristics
 - Interface requirements
 - Physical characteristics and constraints

M03/Engineering/v1.2

M03/Engineering/v1.2

59 of 152

M03/Engineering/v1.2

61

M03/Engineering/v1.2

ММ

M03/Engineering/v1.2

Specific Goals

- SG 1 Select Product-Component Solutions

- Product or product-component solutions are selected from alternative solutions
- SG 2 Develop the Design
 - Product or product-component designs are developed
- SG 3 Implement the Product Design
 - Product components, and associated support documentation, are implemented from their designs

SG 1 Select Prod-Comp. Solnsemi

SP 1.1 Develop alternative solutions and selection criteria

- Typical Work Products
 - Alternative solution screening criteria
 - Evaluations of new technologies
 - Alternative solutions
 - Selection criteria for final selection
 - Evaluation reports of COTS products

SG 1 Select Prod-Comp. Solnsemi

- SP 1.2 Select the product component solutions that best satisfy the criteria established
 - Typical Work Products
 - Product-component selection decisions and rationale
 - Documented relationships between requirements and product components
 - Documented solutions, evaluations, and rationale

SP 2.1 Develop a design for the product or product component

- Typical Work Products
 - Product architecture
 - Product-component designs
- Examples of techniques and methods that facilitate effective design include the following:
 - Prototypes
 - Structural models
 - Object-oriented design
 - Essential systems analysis
 - Entity relationship models
 - Design reuse
 - Design patterns

SP 2.2 Establish and maintain a technical data package

- Typical Work Products
 - Technical data package

SP 2.3 Design product-component interfaces using established criteria

- Typical Work Products
 - Interface design specifications
 - Interface control documents
 - Interface specification criteria
 - Rationale for selected interface design

- SP 2.4 Evaluate whether the product components should be developed, purchased, or reused based on established criteria
 - Typical Work Products
 - Criteria for design and product-component reuse
 - Make-or-buy analyses
 - Guidelines for choosing COTS product components

SG 3 Implement the Prod. Designmi

- SP 3.1 Implement the designs of the product components
 - Typical Work Products
 - Implemented design
 - Examples of software coding criteria include the following:
 - Modularity
 - Clarity
 - Simplicity
 - Structured (e.g., no GOTOs, one entrance, and one exit)
 - Maintainability

SG 3 Implement the Prod. Designmi

SP 3.2 Develop and maintain the end-use documentation

- Typical Work Products
 - End-user training materials
 - User's manual
 - Operator's manual
 - Maintenance manual
 - Online help
- When documentation may need to be revised
 - Requirements change
 - Design changes are made
 - Product changes are made
 - Documentation errors are identified
 - Workaround fixes are identified
Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

;MM

;MM

Verified product components are assembled and the integrated, verified, and validated product is dilivered

77 of 152

;MM

M03/Engineering/v1.2

79 OF 152

;MM

81 01 1

M03/Engineering/v1.2

;MM

:MM

Specific Goals

- SG 1 Prepare for Product Integration
 - Preparation for product integration is conducted
- SG 2 Ensure Interface Compatibility
 - The product-component interfaces, both internal and external, are compatible
- SG 3 Assemble Product Components and Deliver the Product
 - Verified product components are assembled and the integrated, verified, and validated product is delivered

SG 1 Prepare for Product Integrami

SP 1.1 Determine the product-component integration sequence

- Typical Work Products
 - Product integration sequence
 - Rationale for selecting or rejecting integration sequences
- SP 1.2 Establish and maintain the environment needed to support the integration of the product components
 - Typical Work Products
 - Verified environment for product integration
 - Support documentation for the product integration environment

SG 1 Prepare for Product Integrami

- SP 1.3 Establish and maintain procedures and criteria for integration of the product components
 - Typical Work Products
 - Product integration procedures
 - Product integration criteria

SG 2 Ensure Interface Compatermi

SP 2.1 Review interface descriptions for coverage and completeness

- Typical Work Products
 - Categories of interfaces
 - List of interfaces per category
 - Mapping of the interfaces to the product components and product integration environment
- Note
 - SP 2.1 describes a VER / VAL type activity
 - it is slightly redundant with VER / VAL
 - stresses out a necessity to perform VER / VAL in SG2 (there are good reasons)

SG 2 Ensure Interface Compatermi

- SP 2.2 Manage internal and external interface definitions, designs, and changes for products and product components
 - Typical Work Products
 - Table of relationships among the product components and the external environment (e.g., main power supply, fastening product, computer bus system)
 - Table of relationships between the different product components
 - List of agreed-to interfaces defined for each pair of product components, when applicable
 - Reports from the interface control working group meetings
 - Action items for updating interfaces
 - Application program interface (API)
 - Updated interface description or agreement

- SP 3.1 Confirm, prior to assembly, that each product component required to assemble the product has been properly identified, functions according to its description, and that the product-component interfaces comply with the interface descriptions
 - Typical Work Products
 - Acceptance documents for the received product components
 - Delivery receipts
 - Checked packing lists
 - Exception reports
 - Waivers

- SP 3.2 Assemble product components according to the product integration sequence and available procedures
 - Typical Work Products
 - Assembled product or product components

- SP 3.3 Evaluate assembled product components for interface compatibility
 - Typical Work Products
 - Exception reports
 - Interface evaluation reports
 - Product integration summary reports
 - Example results include the following:
 - Any adaptation required to the integration procedure
 - Any change to the product configuration (spare parts, new release)
 - Evaluation procedure deviations

- SP 3.4 Package the assembled product or product component and deliver it to the appropriate customer
 - Typical Work Products
 - Packaged product or product components
 - Delivery documentation

Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

M03/Engineering/v1.2

M03/Engineering/v1.2

95 of 152

CMN

M03/Engineering/v1.2

CMN

M03/Engineering/v1.2

97 of 152

M03/Engineering/v1.2

M03/Engineering/v1.2

99 of 152

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

Specific Goals

- SG 1 Prepare for Verification
 - Preparation for verification is conducted.
- SG 2 Perform Peer Reviews
 - Peer reviews are performed on selected work products.
- SG 3 Verify Selected Work Products
 - Selected work products are verified against their specified requirements

SG 1 Prepare for Verification cmmi

- SP 1.1 Select the work products to be verified and the verification methods that will be used for each
 - Typical Work Products
 - Lists of work products selected for verification
 - Verification methods for each selected work product
 - Examples of verification methods include the following: Path coverage testing
 - Load, stress, and performance testing
 - Decision-table-based testing
 - Functional-decomposition-based testing
 - Test-case reuse
 - Acceptance tests

SG 1 Prepare for Verification CMM

SP 1.2 Establish and maintain the environment needed to support verification

- Typical Work Products
 - Verification environment
- SP 1.3 Establish and maintain verification procedures and criteria for the selected work products
 - Typical Work Products
 - Verification procedures
 - Verification criteria

SG 2 Perform Peer Reviews cmmi

SP 2.1 Prepare for peer reviews of selected work products

- Typical Work Products
 - Peer review schedule
 - Peer review checklist
 - Entry and exit criteria for work products
 - Criteria for requiring another peer review
 - Peer review training material
 - Selected work products to be reviewed
- Examples of types of peer reviews include the following:
 - Inspections
 - Structured walkthroughs
 - Active reviews

SG 2 Perform Peer Reviews cmmi

SP 2.1 Prepare for peer reviews of selected work products

- Note
 - Peer reviews are covered by IEEE Std 1028-1997 IEEE Standard for Software Reviews
 - » the standard defines five types of software reviews, together with procedures required for the execution of each review type
SG 2 Perform Peer Reviews cmmi

- SP 2.2 Conduct peer reviews on selected work products and identify issues resulting from the peer review
 - Typical Work Products
 - Peer review results
 - Peer review issues
 - Peer review data
- SP 2.3 Analyze data about preparation, conduct, and results of the peer reviews
 - Typical Work Products
 - Peer review data
 - Peer review action items

SG 3 Verify Selected Work Prodemi

SP 3.1 Perform verification on the selected work products

- Typical Work Products
 - Verification results
 - Verification reports
 - Demonstrations
 - As-run procedures

SG 3 Verify Selected Work Prodemi

SP 3.2 Analyze the results of all verification activities

- Typical Work Products
 - Analysis report (such as statistics on performances, causal analysis of nonconformances, comparison of the behavior between the real product and models, and trends)
 - Trouble reports
 - Change requests for the verification methods, criteria, and environment

Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

M03/Engineering/v1.2

113 of 152

СММІ

СММ

M03/Engineering/v1.2

116 of 152

СММІ

M03/Engineering/v1.2

117 of 152

CMN

M03/Engineering/v1.2

118 of 152

СММІ

M03/Engineering/v1.2

Specific Goals

- SG 1 Prepare for Validation
 - Preparation for validation is conducted.
- SG 2 Validate Product or Product Components
 - The product or product components are validated to ensure that they are suitable for use in their intended operating environment.

SG 1 Prepare for Validation

- SP 1.1 Select products and product components to be validated and the validation methods that will be used for each
 - Typical Work Products
 - Lists of products and product components selected for validation
 - Validation methods for each product or product component
 - Requirements for performing validation for each product or product component
 - Validation constraints for each product or product component

SG 1 Prepare for Validation

- SP 1.1 Select products and product components to be validated and the validation methods that will be used for each
 - Note
 - Incremental validation should be planned and taken place along the way
 - » according to test best practices
 - » system test and other end-of-life-cycle activities should not be relied on to find all defects
 - » end-of-development test simply confirms confidence in the product

SG 1 Prepare for Validation CMM

SP 1.2 Establish and maintain the environment needed to support validation

- Typical Work Products
 - Validation environment

SG 1 Prepare for Validation

SP 1.3 Establish and maintain procedures and criteria for validation

- Typical Work Products
 - Validation procedures
 - Validation criteria
 - Test and evaluation procedures for maintenance, training, and support
- Examples of sources for validation criteria include the following:
 - Product and product-component requirements
 - Standards
 - Customer acceptance criteria
 - Environmental performance
 - Thresholds of performance deviation

SG 2 Validate Product or Product Components

- SP 2.1 Perform validation on the selected products and product components
 - Typical Work Products
 - Validation reports
 - Validation results
 - Validation cross-reference matrix
 - As-run procedures log
 - Operational demonstrations
- SP 2.2 Analyze the results of the validation activities and identify issues
 - Typical Work Products
 - Validation deficiency reports
 - Validation issues
 - Procedure change request

Agenda

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

M03/Engineering/v1.2

SEP vs. CMMI Engineering CMMI

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

M03/Engineering/v1.2

– The Management Process in System Eng. REQM **Strategy Planning Requirements** Management **Phase** Management **Strategy** Analysis & Commitment **Phase Planning** Analysis **Phase Control Requirements** Exploitation Engineering **Evolution** Analysis & Phase **Commitment** Decommissioning

M03/Engineering/v1.2

- VER Verification
- VAL Validation
- SE Process vs. CMMI Engineering

- Global scope
- RD Requirements Development
- REQM Rep onts Management
- TS
 RD SG1 Develop Customer Requirements RD SG2 Develop Product Requirements RD SG3 Analyze and Validate Requirements
- VER
- VAL Validation
- SE Process vs. CMMI Engineering

- Global scope
- RD **Requirements Development**
- **REQM** Requirements Management
- Solution TS Tech
- Pl **REQM SG1 Manage Requirements**
- VER

• VAL

SE Process vs. CMMI Engineering

- Global scope
- **Requirements Development** • RD
- REQM Requirements Management
- **Technical Solution** TS
- **Integration** • Pl Pro
- VER **TS SG1 Select Product-Component Solutions TS SG2 Develop The Design** • VAL
 - **TS SG3 Imlement The Product Design**
- SE Prc

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration

Ven

• VER

• VAL

- PI SG1 Prepare for Product Integration PI SG2 Ensure Interface Compatibility
- SE Prc PI SG3 Assemble Product Components and Diliver the Product
Summary

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS Technical Solution
- PI Product Integration
- VER Verification
- VAL Van
- SE Prc VER SG1 Prepare for Verification VER SG2 Perform Peer Reviews VER SG3 Verify Selected Work Products

Summary

- RD Requirements Development
- REQM
 Dequiremente Menegement
- TS VAL SG1 Prepare for Validation VAL SG2 Validate Selected Work Products
- PI
- VAL SG2 Validate Selected Work P
- VER verVAL Validation
- SE Process vs. CMMI Engineering

Summary

- Global scope
- RD Requirements Development
- REQM Requirements Management
- TS The System Engineering Process (Life Cycle) Requirements Engineering
- PI Conceptual Design and Implementation Design System Integration
- VER Verification, Validation

Var

The Management Process in System Engineering

SE Process vs. CMMI Engineering

• VAL

Questions

M03/Engineering/v1.2

Ē

CMMI

- 1. List the PAs belonging to Product Development 1.
- 2. List the PAs belonging to Product Development 2.
- 3. What is the purpose of RD?
- 4. What are the specific goals of RD?
- 5. Describe the notion of "allocated requirement".
- 6. Describe the notion of "derived requirement".
- 7. What are the specific practicies for RD SG3: "Analyze and Validate Requirements"?
- 8. What is the purpose of REQM?
- 9. What are the specific goals of REQM?
- 10. Describe the notion of "requirement traceability".
- 11. What are the specific practicies for REQM SG1: "Manage Requirements"?

- 12. What is the purpose of TS?
- 13. What are the specific goals of TS?
- 14. Describe the notion of "tech data package".
- 15. Discuss the differences between "operational scenario" and "operational concept".
- 16. What are the specific practicies for TS SG2: "Develop The Design"?
- 17. What is the purpose of PI?
- 18. What are the specific goals of PI?
- 19. What are the specific practicies for PI SG1: "Prepare for Product Integration"?
- 20. What are the specific practicies for PI SG2: "Ensure Interface Compatibility"?

- 21. What is the purpose of VER?
- 22. What are the specific goals of VER?
- 23. What are the specific practicies for VER SG2: "Perform Peer Reviews"?
- 24. What is the purpose of VAL?
- 25. What are the specific goals of VAL?
- 26. What are the specific practicies for VAL SG2: "Validate Product and Product Components"?
- 27. Discuss the nature of relationship between RD and TS.
- 28. Discuss the nature of relationship between RD and TS.
- 29. Discuss the nature of relationship between TS and PI.
- 30. Discuss the nature of relationship between PI and DAR.

- 31. Discuss the impact of RD on Requirements Engineering in System Engineering Process (SEP).
- 32. Which phases in SEP Life Cycle covers TS?
- 33. Which phases in SEP Life Cycle covers PI?
- 34. Which phases in SEP Life Cycle covers VER?
- 35. Which phases in SEP Life Cycle covers VAL?
- 36. Discuss the impact of REQM on SEP and Managament of SEP.

CMMI for Development V.1.2 Module 3

M03/Engineering/v1.2