
Platform-Based Development:
Android Programming –

Architecture

FTN, Novi Sad, Mini Course,
June 2019
Dr Veljko Pejović

Veljko.Pejovic@fri.uni-lj.si

Partly based on “Programming Handheld Systems”,
Adam Porter, University of Maryland

The World of Android
•  The Android Platform

–  A mobile operating system + libraries + application
frameworks + key apps

–  Based on Linux
–  Open source
–  Runs on a range of devices

•  Some with OEM versions

•  Market share ~ 75% worldwide
•  Android SDK for creating apps

–  Lots of documentation
–  Huge community

Android Versions

Key Android Features

•  Process management specifically tailored for
battery-powered devices
–  When an app is not used, it gets suspended by Android

•  Process management specifically tailored for low-
memory devices
–  When the memory is low, suspended apps are terminated

•  Support for direct manipulation interfaces
–  Touchscreen gestures, sensors, notifications

•  Open ecosystem of applications
–  Support for developing and distributing Android apps

Android Architecture

Android Runtime

•  Android core libraries
–  Besides standard Java libraries for tasks such as file

handling, Strings, etc., Android includes specific
libraries for the mobile environment

–  basic java classes - java.*, javax.*
–  app lifecycle, db management - android.*
–  Internet/Web services - org. *
–  Unit testing - junit.*

•  Process virtual machine (VM):
–  Dalvik (until Android 4.4 KitKat)
–  Android Runtime – ART (starting with 5.0 Lollypop)

Mostly wrap
native libraries

Android Runtime

•  Compilation and workflow (with ART)
–  App written in Java or Kotlin
–  Compiled to Java bytecode files (i.e. .class files)
–  DX converts Java bytecode files to a single DEX

bytecode file (.dex file) optimised for space
–  .apk file is generated with the dex file and all the

application resources, manifest, etc.

javac Proguard
(optional) DX Zip

Code.java

Code.kt

libs.class

dex2oat .elf

.class obfuscated
.class

.dex .apk

Resources and
native code

Resources

•  Android application resources:
–  Non-compiled static content of your app
–  See “res” folder created by

Android Studio
–  Examples:

•  String values
•  Bitmaps (e.g. backgrounds, icons)
•  Layout files
•  Styles’ definitions

–  Programmatically accessible via the
automatically-generated R file

String mystring = getResources()
 .getString(R.string.mystring);

Basic Application Components

•  Activity
–  Has a graphical user interface (GUI)

•  Service
–  Performs background processing

•  BroadcastReceiver
–  Subscribes to events of interest

•  Intent
–  Communicates an intention to perform an action

•  ContentProvider
–  Encapsulates and exposes data

What is an Application?

•  Application
–  A collection of components that are packaged

together, can be instantiated and ran as needed
–  Note that there is also Application class in Android,

however, usually there is no need to use it
•  .apk – is what we usually refer to when we say

“application”

Activity

•  The primary class for managing user interaction
•  One Activity usually implements a single focused

task a user can do:
–  Log-in screen
–  Select a contact to write a message to
–  “Compose message” window

•  Usually more than one Activity per application
•  Activity interface itself is usually defined in a

separate layout file, an XML file in the resources

Activity

•  A user’s interaction influences the activity that is
going to be shown
–  Activity launching/parking via Intents in the code
–  Using “Up”, “Back”, “Home”, “Menu/Recent apps”

buttons, swipes

Activity Lifecycle

•  Mobile devices have limited resources
–  Battery charge
–  Computing power
–  Screen real estate

•  Activities are kept active only when a user can
interact with them

•  Activities are stopped in the background when
not used

•  Activities may be destroyed when the OS needs
resources

Activity Lifecycle

•  Activity state:
–  Active/Running – in the foreground, visible, user

interacting
–  Paused – lost focus but still visible, maintains state

and member information
–  Stopped – completely obscured by another activity,

retains state and member information, however, no
longer visible; can be terminated by the OS when
needed

Activity Lifecycle

•  An Activity moves through lifecycle state
changes, usually as dictated by the user
interaction

•  Activity lifecycle state changes trigger the
following activity methods:
protected void onCreate (Bundle savedInstanceState)
protected void onStart()  
protected void onResume()  
protected void onPause()
protected void onRestart()  
protected void onStop()  
protected void onDestroy()
	

Activity Lifecycle

Activity exists

Activity Lifecycle

Activity visible

Activity Lifecycle

Activity visible and
in foreground

Starting Activities

•  Create an Intent specifying the Activity to start
•  Pass the Intent to one of the following methods:

–  startActivity()
•  launches the Activity described by the Intent

–  startActivityForResult()
•  launches the Activity described by the Intent and expects a

result that will be returned via onActivityResult
•  the called activity can set result via setResult() method

Task

•  A task is a collection of Activities that users
interact with when performing a certain job

•  The Activities need not be from the same
application (although usually they are)

•  Backstack: the activities are arranged in a stack
in the order in which each activity is opened
–  When launched the activity goes on top of the

backstack
–  When destroyed it is popped of the backstack

Backstack
A new activity (Activity 2) is created and

started, the old one (Activity 1) is stopped

Activity 3 destroyed when the user
clicked BACK, Activity 2 is started

Backstack

•  More than one instance of an
Activity can be on the backstack
–  This behaviour can be changed via

Intent options or in the Manifest file
•  When HOME is pressed, the

current activity is stopped, its task
goes into the background.

•  If the user later resumes the
task, the activity at the top
of the stack is started

Intent

•  A data structure representing:
–  An operation to be performed or
–  An event that has occurred

•  Intents serve as a glue between activities
–  Constructed by a component that wants some work to

be done
–  Received by an Activity that can perform that work

•  Hold an abstract description of an action to be
performed
–  Take a photo, pick a contact, show a webpage

SharedPreference

•  Preserve a small amount of primitive type (int,
float, String, Boolean) data on a device
–  Data are saved as key-value pairs
–  Should be read/written by your app only
–  Stored for as long as the app is installed on a device

•  Common use:
–  User preferences – username, customisations, such

as preferred WiFi AP, preferred theme, etc.
–  Variables for conditional app execution

•  When the app is launched for the first time set “launched” to
True; next time, check if “launched” was set or not

http://developer.android.com/reference/android/content/SharedPreferences.html

Accessing SharedPreferences

•  Reading

•  Need to know the type of data:
–  getBoolean()
–  getString()
–  getAll() returns a Map of key-value pairs

SharedPreferences settings = getApplicationContext()  
 .getSharedPreferences(“preferences”, MODE_PRIVATE);  
 
boolean wasLaunched = settings.getBoolean(“launched”, false);

Always use
MODE_PRIVATE

Accessing SharedPreferences

•  Writing

•  Different put methods for different data types
•  Don’t forget to save changes by calling

–  editor.commit() – synchronous
(avoid calling on the main thread) or

–  editor.apply() – changes the in-memory object
immediately, but writes to disk asynchronously

SharedPreferences settings = getApplicationContext()  
 .getSharedPreferences(“preferences”, MODE_PRIVATE);  
SharedPreferences.Editor editor = settings.edit();
editor.putBoolean(“launched”, true);  
editor.commit();

