Semantic Relational Learning

Nada Lavrač Jožef Stefan Institute, Ljubljana, Slovenia

Novi Sad October 4, 2019

Jožef Stefan Institute, Ljubljana, Slovenia

Jožef Stefan Institute (JSI, founded in 1949)

– named after a distinguished physicist
 Jožef Stefan (1835-1893)

 $\mathbf{j} = \mathbf{\sigma}\mathbf{I}^4$

- leading national research organization in natural sciences and technology (~700 researchers and students)
- Jožef Stefan International Postgraduate School (founded in 2004)
 - Offers four MSc and PhD programs (in English): ICT, nanotechnologies, ecotechnologies and sensor technologies

Department of Knowledge Technologies

- Head: Nada Lavrač, Staff: 45 researchers
- Knowledge Technologies
 - Making AI techniques operational for practical problems

Department of Knowledge Technologies

- Head: Nada Lavrač, Staff: 45 researchers
- Knowledge Technologies
 - Making AI techniques operational for practical problems
- Main research areas
 - Data Mining and Machine Learning
 - Text Mining and Human Language Technologies
 - Web Services and Semantic Web
 - Ontologies and Knowledge Management
 - Decision Support Systems
- Applications
 - Medicine, Bioinformatics, Public Health
- Ecology, Finance, ...

Department of Knowledge Technologies

My research preferences

- Data Mining
- Text Mining
- Web Services and Workflows
- Knowledge Management

Applications

 Applications
 Medicine, Bioinformatics

 FROMULEDGE Public Health

Talk outline

First Generation Data Mining

- Basics of Machine Learning and Data Mining
- Second Generation Data Mining
 - Selected Algorithms and Biomedical Applications
- Third Generation DM Techniques and Platforms
 - Relational Data Mining
 - Semantic Relational Learning: Using ontologies in DM
- Current Work and Conclusions

Machine Learning and Data Mining

data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
018	62	myope	no	normal	NONE
019-023					
024	56	hypermetrope	yes	normal	NONE

knowledge discovery from data

Machine Learning Data Mining

model, patterns, ...

Given: class labeled data Find: classification model or set of interesting patterns in the data

Machine Learning and Data Mining

data

	1000				
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
024	56	hypermetrope	yes	normal	NONE

knowledge discovery from data

Machine Learning Data Mining

model, patterns, ...

Given: class labeled data Find: classification model or set of interesting patterns in the data

new unclassified instance

classified instance

black box classifier no explanation

symbolic model symbolic patterns explanation

Contact lens data

DATA

		(management) - State			
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
03	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013		<u> </u>			
014	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
018	62	myope	no	normal	NONE
019-023				··· ··	
O24	56	hypermetrope	yes	normal	NONE

Pattern discovery in Contact lens data

DATA

- J		Concerning and the second		and the second second		-theory -
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	PATTERN
01	17	myope	no	reduced	NONE	the transmission of the test of te
02	23	myope	no	normal	SOFT	
O3	22	myope	yes	reduced	NONE	
O4	27	myope	yes	normal	HARD	Rule:
O5	19	hypermetrope	no	reduced	NONE	
06-013		/	· · · · ·			
014	35	hypermetrope	no	normal	SOFT	Tear prod. =
O15	43	hypermetrope	yes	reduced	NONE	reduced
O16	39	hypermetrope	yes	normal	NONE	
017	54	myope	no	reduced	NONE	TUEN
O18	62	myope	no	normal	NONE	
019-023						Lenses =
O24	56	hypermetrope	yes	normal	NONE	NONE

Classical machine learning techniques for knowledge discovery in data

KNOWLEDGE = a model whose validity is confirmed by the domain expert

USE of AUTOMATICALLY INDUCED KNOWLEDGE as additional expert opinion for decision support

Example: Learning a classification model from contact lens data

TECHNOLOGIE

Entropy measure of impurity of training set S: $E(S) = -p_+ \log_2 p_+ - p_- \log_2 p_-$

Example: Learning a classification model from contact lens data

 lenses=NONE ← tear production=red
 HARD
 NONE

 lenses=NONE ← tear production=normal AND astigmatism=yes AND
 spect. pre.=hypermetrope

 lenses=SOFT ← tear production=normal AND astigmatism=no

 lenses=HARD ← tear production=normal AND astigmatism=yes AND

spect. pre.=myope

KNOWLEDGE

Task reformulation: Binary Class Values

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
014	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes (positive vs. negative examples of Target class) - simplified single concept learning

- "one vs. all" multi-class learning

Other tasks: Learning from Numeric Class Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice
01	17	myope	no	reduced	0
02	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
O4	27	myope	yes	normal	5
O5	19	hypermetrope	no	reduced	0
06-013					
O14	35	hypermetrope	no	normal	5
O15	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
017	54	myope	no	reduced	0
018	62	myope	no	normal	0
019-023					
O24	56	hypermetrope	yes	normal	0

Numeric class values - regression analysis

Other tasks: Learning from Unlabeled Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
04	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					X.
014	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
018	62	myope	no	normal	NONE
019-023					/ \
O24	56	hypermetrope	yes	normal	NONE

Unlabeled data - clustering: grouping of similar instances (similar instances – many common values)

First Generation Data Mining

- First machine learning algorithms for
 - Decision tree and rule learning in 1970s and early 1980s by Quinlan, Michalski et al., Breiman et al., ...
- Characterized by
 - Learning from data stored in a single data table
 - Relatively small set of instances and attributes
- Lots of ML research followed in 1980s
 - Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
 - Extended set of learning tasks and algorithms addressed

Second Generation Data Mining

Developed since 1990s:

 Focused on data mining tasks characterized by large datasets described by large numbers of attributes
 Industrial standard: CRISP-DM methodology (1997)

Second Generation Data Mining

Developed since 1990s:

 Focused on data mining tasks characterized by large datasets described by large numbers of attributes
 Industrial standard: CRISP-DM methodology (1997)

- New conferences on practical aspects of data mining and knowledge discovery: KDD, PKDD, …
- New learning tasks and efficient learning algorithms:
 - Learning predictive models: Bayesian network learning,, relational data mining, statistical relational learning, SVMs, ...
 - Learning descriptive patterns: association rule learning, subgroup discovery, ...

Subgroup Discovery

- Data transformation:
 - binary class values (positive vs. negative examples of Target class)
- Subgroup discovery:
 - a task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and significant

					Property lines
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Subgroup discovery in High CHD Risk Group Detection

Input: Patient records described by anamnestic, laboratory and ECG attributes

Task: Find and characterize population subgroups with high CHD risk (large enough, distributionaly unusual)

From best induced descriptions, five were selected by the expert as most actionable for CHD risk screening (by GPs): high-CHD-risk ← male & pos. fam. history & age > 46 high-CHD-risk ← female & bodymassIndex > 25 & age > 63 high-CHD-risk ← ... high-CHD-risk ← ...

(Gamberger & Lavrač, JAIR 2002)

Subgroup discovery in functional genomics

- Functional genomics is a typical scientific discovery domain, studying genes and their functions
- Very large number of attributes (genes)
- Interesting subgroup describing patterns discovered by SD algorithm

CancerType = Leukemia

IF	KIAA0128	= DIFF.	EXPRESSED)
----	----------	---------	-----------	---

AND prostoglandin d2 synthase = NOT_ DIFF. EXPRESSED

Interpretable by biologists

D. Gamberger, N. Lavrač, F. Železný, J. Tolar Journal of Biomedical Informatics 37(5):269-284, 2004

SD algorithms in the Orange DM Platform

- Orange data mining toolkit

 classification and subgroup discovery algorithms
 data mining workflows
 - visualization

SD Algorithms in Orange

- SD (Gamberger & Lavrač, JAIR 2002)
- Apriori-SD (Kavšek & Lavrač, AAI 2006)
- CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 classification rule learner to Subgroup Discovery

Other Data Mining Platforms

WEKA, KNIME, RapidMiner, Orange4WS, ...

– include numerous data mining algorithms
– enable data and model visualization
– enable complex workflow construction

Talk outline

- First Generation Data Mining
 - Basics of Machine Learning and Data Mining
- Second Generation Data Mining
 - Selected Algorithms and Biomedical Applications
- Third Generation DM Techniques and Platforms
 - Relational Data Mining
 - Semantic Relational Learning: Using ontologies in DM
- Current Work and Conclusions

Relational Data Mining

Given: a relational database, a set of tables, sets of logical facts, a graph, ...

Find: a classification model, a set of patterns

Relational Data Mining

- Learning from multiple tables
 - patient records connected with other patient and demographic information
- Complex relational problems:
 - temporal data: time series in medicine, ...
 - structured data: representation of molecules and their properties in protein engineering, biochemistry, ...

Relational Data Mining through Propositionalization

Relational Data Mining through Propositionalization

				Cl	isto	mer	_			
		ID ∮	Zip	S ex	$_{\rm St}^{\rm So}$	\lim_{con}	ıe	A ge	Cl ub	$_{\rm sp}^{\rm Re}$
		ľ								
	/	3478	34677	m	si	60-1	70	32	me	nr
/	/	3479	43666	f	ma	80-9	90	45	nn	1 re
							-			_
			order							
Customer	Qr	der	Store	D	eliv	ery	\mathbf{P}	'ayı	\mathbf{nt}	1
ш	րո		\mathbf{m} /	M	lode		N	lod	e	
			\	. .						i
3478	214	10267	12	Ire	gula	ar	c	ash		
3478	344	16778	12	\le:	rpre	SS	c]	hec	k	
3478	472	28386	17	Ire	gula	ar	¢.	hec	k	
3479	323	33444	17	- le:	spre	ss	c	redi	it	
3479	347	75886	12	r,	gula	ar	çı	redi	it	
]	'	1					
					1					,
					$ \bot $					
					\Box		_		s	tore
					Sto	re 🛛	D	Siz	e	Тур
					12			\mathbf{sm}	all	franc
					17			lar	ee	inde

Relational representation of customers, orders and stores.

Location

se city

Step 1 Propositionalization

- 1. constructing relational features
- 2. constructing a propositional table

Step 2

Data mining

Classification model

Relational Data Mining through Propositionalization

				C	isto	mer			
		ID /	Zip	S ex	$_{\rm St}^{\rm So}$	In come	e <mark>A</mark>	Cl ub	$_{\rm sp}^{\rm Re}$
	/								
		3478	34677	m	si	60-7	0 32	me	nr
	/	3479	43666	f	\mathbf{ma}	80-9	0 45	nn	re
			•						
/			order						
Customer	Qre	ler	Store	E	eliv	ery 🛛	Раут	\mathbf{nt}	
Ш	րո		\mathbf{m} f	N	lode	:	Mod	le	
			\						
3478	214	0267	12	Ire	egula	ar (cash		
3478	344	6778	12	\]e:	xpre	ss	chec	k	
3478	472	8386	17	Ire	egula	ar (chec	k	
3479	323	3444	17	e:	xpre	ss	cred	it	
3479	347	5886	12	h	egula	ar	cred	it	
)	'	1°				
					1				
					. \				
					1			S	tore
					Sto	re ID	Siz	e	Тур
					12		\mathbf{sm}	all	fran

Relational representation of customers, orders and stores.

Location

secity

rural

large indep

	CA	50		~	C.F.			- SME				-
	t1	12	13	1 4	15	16		10		1		t
g1	1	0	0	1	1	1	0	0	1	0	1	
g2	0	1	1	0	1	1	0	0	0	1	1	
g3	0	1	1	1	0	0	1	1	0	0	0	
g4	1	1	1	0	1	10 ² 0	0	0	1	1	1	
g5	1	1	1	0	0	0010	0	1	1	0	1	
g1	0	٥	1	1	0	0	0	1	0	0	0	
g2	1	1	0	0	1	1	0	1	0	1	1	
g3	0	0	0	0	1	0	0	1	1	1	0	
g4	1	0	1	1	1	0	1	0	0	1	0	

Step 1 Propositionalization

- 1. constructing relational features
- constructing a propositional table

		f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
1	g1	1	0	0	1	1	1	0	0	1	0	1	1
2	g 2	0	1	1	0	1	1	0	0	0	1	1	0
	g3	0	1	1	1	0	0	1	1	0	0	0	1
1	g4	1	1	1	0	1	roło	0	0	1	1	1	0
	g5	1	1	1	0	0 4	0010	0	1	1	0	1	0
	g1	0	٥	1	1	0	0	0	1	0	0	0	1
1	g2	1	1	0	0	1	1	0	1	0	1	1	1
	g3	0	0	0	0	1	0	0	1	1	1	0	0
1	g4	1	0	1	1	1	0	1	0	0	1	0	1

```
target(A) :-
    'Doctor'(A), 'Italy'(A).
```

```
target(A) :-
    'Public'(A), 'Gold'(A).
```

```
target(A) :-
    'Poland'(A), 'Deposit'(A), 'Gold'(A).
```

```
target(A) :-
'Germany'(A), 'Insurance'(A).
```

```
target(A) :-
    'Service'(A), 'Germany'(A).
```

patterns (set of rules)

Step 2

Subgroup discovery

Relational Data Mining in Orange4WS

service for propositionalization through efficient first-order feature construction (Železny and Lavrač, MLJ 2006)
 f121(M):- hasAtom(M,A), atomType(A,21)
 f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
 subgroup discovery using CN2-SD
 mutagenic(M) ← feature121(M), feature235(M)

Wordification approach to RDM

Transform a relational database into a document corpus

• For each individual (row) in the main table, concatenate the "words" generated for the main table with the "words" generated for the other tables, linked through external keys

Text mining: Words/terms as binary features

	(
Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Text mining

BoW vector construction

	Document	Word1	Word2		WordN	Class
	d1	1	1	0	1	NO
	d2	1	1	0	0	YES
	d3	1	1	1	1	NO
	d4	1	1	1	0	YES
>	d5	1	0	0	1	NO
	d6-d13					
	d14	0	0	0	0	YES
	d15	0	0	1	1	NO
	d16	0	0	1	0	NO
	d17	0	1	0	1	NO
	d18	0	1	0	0	NO
	d19-d23					
	d24	0	0	1	0	NO

Document	Word1	Word2		WordN	Class	
d1	1	1	0	1	NO	
d2	1	1	0	0	YES	
d3	1	1	1	1	NO	
d4	1	1	1	0	YES	
d5	1	0	0	1	NO	
d6-d13						
d14	0	0	0	0	YES	
d15	0	0	1	1	NO	
d16	0	0	1	0	NO	
d17	0	1	0	1	NO	
d18	0	1	0	0	NO	
d19-d23	IENT OF •••					
<u>_d24N0</u> V	VLEDGE	0	1	0	NO	
IECHIVUL						
JC	JZEI Otoran mistriule					

model, patterns, clusters,

Wordification Methodology

- One individual of the main data table in the relational database ~ one text document
- Features (attribute values) ~ the words of this document
- Individual words (called word-items or witems) are constructed as combinations of:
 - [table name]_[attribute name]_[value]
- n-grams are constructed to model feature dependencies:

$$[witem_1]_{-}[witem_2]_{-} \dots _{-}[witem_n]$$

Wordification Methodology

Transform a relational database to a document corpus

- For each individual (row) in the main table, concatenate words generated for the main table with words generated for the other tables, linked through external keys
- Construct BoW vectors with TF-IDF weights on words (optional: Perform feature selection)
- Apply text mining or propositional learning on BoW table

Wordification on simplified trains problem

			CAR				
TRAIN		_	carID	shape	roof	wheels	train
trainID	eastbound	-	c11	rectangle	none	2	t1
t1	east		c12	rectangle	peaked	3	t1
• • •			•••	•••	•••		• • •
t5	west		c51	rectangle	none	2	t5
			c52	hexagon	flat	2	t5

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, car_wheels_3, car_roof_peaked__car_shape_rectangle, car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

Wordification

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, car_wheels_3, car_roof_peaked__car_shape_rectangle, car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

t5: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon, car_wheels_2, car_roof_flat__car_shape_hexagon, car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], **west**

TF-IDF calculation for BoW vector construction:

	car_shape	car_roof	car_wheels_3	car_roof_peaked	car_shape_rectangle	 class
	_rectangle	_peaked		car_shape_rectangle	car_wheels_3	
t1	0.000	0.693	0.693	0.693	0.693	 east
tS	0.000	0.000	0.000	0.000	0.000	 west

TF-IDF weights

- No explicit use of existential variables in features, TF-IDF instead
- The weight of a word indicates how relevant is the feature for the given individual
- The TF-IDF weights can then be used either for filtering words with low importance or for using them directly by a propositional learner (e.g. J48)

Evaluation of propositionalization approaches in relational classification tasks

- Cross-validation experiments on 8 relational datasets: Trains (in two variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
- Results (using J48 for propositional learning)
 MEASURE = CA
 MEASURE = RUN-TIME

Semantic Relational Learning

ILP, relational learning, relational data mining

- Learning from complex relational databases
- Learning from complex structured data, e.g. molecules and their biochemical properties
- Learning by using domain knowledge in the form of ontologies = semantic data mining

Talk outline

- First Generation Data Mining
 - Basics of Machine Learning and Data Mining
- Second Generation Data Mining
 - Selected Algorithms and Biomedical Applications
- Third Generation DM Techniques and Platforms
 - Relational Data Mining
 - Semantic Relational Learning: Using ontologies in DM
- Current Work and Conclusions

Semantic Relational Learning: Using domain ontologies in DM

Using domain ontologies as background knowledge, e.g., using the Gene Ontology (GO)

 GO is a database of terms, describing gene sets in terms of their

- functions (12,093)
- processes (1,812)
- components (7,459)
- Genes are annotated to GO terms
- Terms are connected (is_a, part_of)
- Levels represent terms generality

Using GO as background knowledge in DNA microarray data analysis

Propositionlization approach to Semantic data mining

1. Take ontology terms represented as logical facts in Prolog, e.g. component (gene2532, 'GO:0016020'). function (gene2534, 'GO:0030554'). process (gene2534, 'GO:0007243'). interaction (gene2534, gene4803).

3. Propositionalization: Determine truth values of features

4. Learn rules by a subgroup discovery algorithm CN2-SD

Step 2: Automatically generate generalized relational features

Construction of first order features with supp. > *min_supp.*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004871'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020'). f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

existential

Step 3: Propositionalization - determine truth values of features

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036) random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g4 (gene9657) random g5 (gene19679)

	••												
		f1	f2	f3	f4	f5	f6			U.			fn
g	1	1	0	0	1	1	1	0	0	1	0	1	1
g	2	0	1	1	0	1	1	0	0	0	1	1	0
g	3	0	1	1	1	0	0	1	1	0	0	0	1
g	4	1	1	1	0	1	1	0	0	1	1	1	0
g	5	1	1	1	0	0	1	0	1	1	0	1	0
g	1	0	0	1	1	0	0	0	1	0	0	0	1
g	2	1	1	0	0	1	1	0	1	0	1	1	1
g	3	0	0	0	0	1	0	0	1	1	1	0	0
oF g	4	1	0	1	1	1	0	1	0	0	1	0	1
g g g g	5 1 2 3 4	1 0 1 0 1	1 0 1 0 0	1 1 0 0 1	0 1 0 0 1	0 0 1 1 1	1 0 1 0 0	0 0 0 0 1	1 1 1 1 0	1 0 0 1 0	0 0 1 1 1	1 0 1 0 0	C 1 1 C 1

HNULUGIES

Step 4: Learn rules by a subgroup discovery algorithm CN2-SD

-	-					-	-		-			-	
	f1	f2	£3	f4	f5	f6						fn	Over
g1	1	0	0	1	1	1	0	0	1	0	1	1	Over-
g2	0	1	1	0	1	1	0	0	0	1	1	0	expressed
g 3	0	1	1	1	0	0	1	1	0	0	0	1	IF
g4	1	1	1	0	1	1	0	0	1	1	1	0	f2 and f3
g5	1	1	1	0	0	1	0	1	1	0	1	0	[4,0]
g1	0	0	1	1	0	0	0	1	0	0	0	1	
g 2	1	1	0	0	1	1	0	1	0	1	1	1	
g 3	0	0	0	0	1	0	0	1	1	1	0	0	
g4	1	0	1	1	1	0	1	0	0	1	0	1	

Semantic Relational Learning in Orange4WS

A special purpose Semantic Data Mining algorithm SEGS

- discovers interesting gene group descriptions as conjunctions of ontology concepts from GO, KEGG and Entrez
- integrates public gene annotation data through relational features
- SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 2008) is available in Orange4WS

Third Generation Data Mining Platforms

Should be ...

- cloud-based
- service oriented (DM algorithms as web services)
- web-based
- enable simple construction of web services from available algorithms

New platform: ClowdFlows (Kranjc et al., 2012)

 Is cloud-based, service-oriented, on the web http://clowdflows.org

ClowdFlows platform

- Allows for simple creation and execution of complex DM procedures
 - Algorithms are web services (in the "cloud")
 - No installation of the platform is needed
 - Workflows are available to everyone through any browser with a simple web click e.g. propositionalization at

Cloud computing

http://clowdflows.org/workflow/611/

ClowdFlows platform

Large repository of algorithms

- Includes relational and semantic data mining algorithms
- All algorithms from the Orange platform
- WEKA algorithms as web services
- Big data analysis

Kranjc et al., Inf. Proc. and Manag. 2014

- Text analysis
- Social network analysis
- Analysis of data streams
- Large repository of workflows

ECHNOLOGIES access to our JSI technology heritage

🗄 🧰 Visual performance evaluation (ViperCharts)

🗄 🗀 Streaming

^{⊕.}[©] Strings ^{⊕.}[©] Testing

🗄 🗀 Weka

[⊕] [⊕] WSDL Imports

🗄 🗀 Subprocess widgets

Example: Semantic data mining

Discovering interesting subgroups in data and their biological explanation with ontologies (Vavpetič et al., JIIS 2014)

http://clowdflows.org/workflow/910/

Wordification implemented in ClowdFlows

 Propositionalization through wordification, available at http://clowdflows.org/workflow/1455/

Challenge addressed in recent work

The challenge is to fill the current gap between semantic web and data science: Which part of the semantic web is most important to my current interests?

- + Finds complex rules
- + Higly informative
- Computationally demanding
- Complexity grows exponentially

Fast Scalable Informative

Network analysis

- + Can process massive data+ Fast, easy to calculate
- Less informative results

Challenge addressed in recent work

New challenge and methodology

- Take a large knowledge graph such as BioMine, or a Linked Open Data resource, such as Bio2RDF (to be addressed in our joint work with Dumontier)
- Use Semantic data mining (SDM) to mine experimental data with ontologies as background knowledge to get explanations for groups of TargetClass objects, e.g. BreastCancer ← chromosome AND cell cycle
- Reduce the complexity of learning in a huge search space of ontology terms by network analysis-based node filtering

(Kralj et al., LPNMR 2018, JMLR 2019)

Network analysis for feature selection

Which part of a given knowledge graph is most relevant for the given experimental data ?

SDM algorithm Hedwig

- + Finds complex rules
- + Higly informative
- Computationally demanding
- Complexity grows exponentially

Fast Scalable Informative Network analysis

+ Can process massive data

- + Fast, easy to calculate
- Less informative results

(Kralj et al., LPNMR 2016, JMLR 2019)

Network analysis for feature reduction: NetSDM (Kralj et al. 2019)

- Use network analysis (Personalized PageRank) to estimate the importance of features (e.g. ontology terms)
- Reduce the complexity of the huge search space of ontology terms by network analysis based term filtering
- Same accuracy, up to 100% speed up

NetSDM algorithm outline

- 1. Estimate ontology term relevance
- 2. Delete terms with low relevance
- 3. Run semantic relational learning algorithm Hedwig on pruned ontolgy

Step 1

Step 2

Step 3

Example: Analysis of ALL data using Gene Ontology

Input to NetSDM:

Example: Analysis of ALL data using Gene Ontology

NetSDM:

Example: Analysis of ALL data using Gene Ontology

Output of NetSDM:

Results

- Personalized PageRank can be effectively used to decrease the size of the search space of Semantic Relational Learning algorithms
- Accuracy did not decrease even when significantly decreasing the size of the background knowledge to less than 5%.
- Time, taken to discover rules on pruned background knowledge, is shorted by a factor of 100

Summary and conclusions

- The presented approaches
 - Can be effectively used for relational and semantic data mining, but are only applicable to individual centered representations (1-tomany, not many-to-many relations)
 - Can be used for structured data flattening, as data preprocessing step for modern DM, e.g. deep learning
 - A wordification approach to propositionalization is especially powerful (Perovšek et al. 2016), can be used as a data fusion mechanism when mining heterogeneous information networks (Grčar et al. 2014)
 - Network analysis can be used as a mechanism for feature reduction

.... all these being implemented and made publicly reusable as

complex workflows in ClowdFlows

Paradigm shift in Semantic Data Mining: Mining Linked Open Data

- We envision a paradigm shift from data mining (mining of empirical data) in standard data mining platforms to knowledge mining on the web
 - mining knowledge encoded in knowledge graphs,
 - constrained by annotated (empirical) data collections
- Results of Kralj et al. show to be Linked Open Data
- future work is planned, using Bio2RDF (with M. Dumontier)
- Combining with embedding
 - technology (project EMBEDDIA)

Summary and conclusion: Semantic Relational Learning in context

